Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370836

RESUMO

Background: Oculoauriculovertebral Spectrum (OAVS) encompasses a wide variety of anomalies on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular and vertebral anomalies. We present the genetic findings of a large three-generation family with multiple members affected with macrostomia, preauricular tags and uni- or bilateral ptosis following an autosomal dominant segregation pattern. Methods: We generated whole genome sequencing data for the proband, affected parent and unaffected paternal grandparent followed by Sanger sequencing on 23 family members for the top 10 candidate genes: KCND2, PDGFRA, CASP9, NCOA3, WNT10A, SIX1, MTF1, KDR/VEGFR2, LRRK1, and TRIM2. We performed parent and sibling-based transmission disequilibrium tests and burden analysis to explore segregation and burden of candidate gene mutations. Bioinformatic analyses investigated the biological connection between genes and the abnormal phenotypes. Results: Overall, rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best evidence of segregation with the OAV phenotypes in this family. When considering affection with any of the 3 OAVS phenotypes as an outcome, parent-TDTs and sib-TDTs (unadjusted p-values) found that SIX1 (p=0.025, p=0.052), followed by PDGFRA (p=0.180, p=0.069) and KDR/VEGFR2 (p=0.180, p=0.069) have the strongest associations in this family. Burden analysis via a penalized linear mixed model identified SIX1 (RC=0.87) and PDGFRA (RC=0.98) as having the strongest association with OAVS severity. Using phenotype-specific ogfrautcomes, sib-TDTs identified associations between (1) SIX1 with uni- or bilateral ptosis (p=0.049) and ear tags (p=0.01), (2) PDGFRA and KDR/VEGFR2 with ear tags (both p<0.01). Conclusion: Our study reports the genomic findings of a large family with multiple individuals affected with OAVS phenotypes with autosomal dominant inheritance. Our findings narrow down to three potential candidate genes, SIX1, PDGFRA, and KDR/VEGFR2. Among these, SIX1 has been previously associated with OAVS ear malformations and it is co-expressed with EYA1 during ear development. Attempts to strengthen the genotype-phenotype co-relation underlying the OAVS of phenotypes are essential to discover the etiological factors leading to this complex and burdensome condition as well as for family counseling and prevention efforts.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36936396

RESUMO

Introduction: Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods: We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion: Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.

3.
Cleft Palate Craniofac J ; 48(6): 646-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21740177

RESUMO

BACKGROUND: Orofacial clefts are the most common malformations of the head and neck, with a worldwide prevalence of 1 in 700 births. They are commonly divided into CL(P) and CP based on anatomic, genetic, and embryologic findings. A Nigerian craniofacial anomalies study (NigeriaCRAN) was set up in 2006 to investigate the role of gene-environment interaction in the origin of orofacial clefts in Nigeria. SUBJECTS AND METHODS: DNA isolated from saliva from Nigerian probands was used for genotype association studies and direct sequencing of cleft candidate genes: MSX1 , IRF6 , FOXE1, FGFR1 , FGFR2 , BMP4 , MAFB, ABCA4 , PAX7, and VAX1 , and the chromosome 8q region. RESULTS: A missense mutation A34G in MSX1 was observed in nine cases and four HapMap controls. No other apparent causative variations were identified. Deviation from Hardy Weinberg equilibrium (HWE) was observed in these cases (p = .00002). A significant difference was noted between the affected side for unilateral CL (p = .03) and bilateral clefts and between clefts on either side (p = .02). A significant gender difference was also observed for CP (p = .008). CONCLUSIONS: Replication of a mutation previously implicated in other populations suggests a role for the MSX1 A34G variant in the development of CL(P).


Assuntos
População Negra/genética , Fenda Labial/genética , Fissura Palatina/genética , Fator de Transcrição MSX1/genética , Mutação de Sentido Incorreto/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Fenda Labial/epidemiologia , Fissura Palatina/epidemiologia , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Nigéria/epidemiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...